Synthesis, Crystal Structure and Thermodynamic Properties of the Compound
\((\text{C}_{10}\text{H}_{16}\text{NO})_{2}\text{CdCl}_4\cdot\text{C}_{10}\text{H}_{16}\text{NOCl}\cdot\text{H}_2\text{O}(s)\)

1DONG-HUA HE, 1,2JING-TAO CHEN, 1YOU-YING DI*, 1ZHEN-PING CHEN,
1DA-QI WANG AND 1WEN-YAN DAN

1College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P.R.. China.
2Department of Chemistry, Shaanxi Educational College, Xi’an, Shaanxi, 710061, China.

(Received on 2nd December 2009, accepted in revised form 20th September 2010)

Summary: A novel complex \((\text{C}_{10}\text{H}_{16}\text{NO})_{2}\text{CdCl}_4\cdot\text{C}_{10}\text{H}_{16}\text{NOCl}\cdot\text{H}_2\text{O}(s)\) was synthesized by the method of liquid phase reflux synthesis. FTIR, chemical and elemental analysis, and X-ray crystallography were applied to characterize the crystal structure and composition of the complex. The crystal structure of the complex belongs to triclinic system with space group \(P1\) and cell parameters \(a=0.55703(6)\ \text{nm}, b=1.39937(15)\ \text{nm}, c=1.40559(16)\ \text{nm}; \alpha=117.819(2)^\circ, \beta=98.8510(10)^\circ, \gamma =96.5770(10)^\circ\), respectively. The compound is a salt, which consists of three \([\text{C}_{10}\text{H}_{16}\text{NO}]^+\) cations, a \([\text{CdCl}_4]^2-\) anion, a \(\text{Cl}\) anion and a water molecule. On account of electrostatic attraction and four types of intramolecular hydrogen bonds an infinite network supermolecule is formed. Low-temperature heat capacities of the compound were measured by a precise automated adiabatic calorimeter over the temperature range from 78 to 365 K. A polynomial equation of heat capacities against the temperature in the region of \((78—365)\ \text{K}\) was fitted by least square method. Based on the fitted polynomial equation, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K.

Introduction

Ephedrine hydrochloride is not only an important drug, but also one of main ingredients of many pharmaceutical prescription, which has an important pharmac value because of its higher biological activity. It can directly activate \(\alpha\) or \(\beta\) adrenergic receptor, stretch bronchus and contract partial vas in a long time [1]. It also can suscitate the central nervous system and the heart, relax bronchial smooth muscle, contract bronchial mucosa and lung capillaries, reduce the hypoxia in body and adjust the blood pressure. Consequently, it shows a significant clinical effectiveness in the treatment of bronchial asthma, spinal anesthesia, nasal congestion, hypopisias induced by epidural anesthesia, edema and other diseases [2], but it is still toxic to our body if taking in the long term because of its addiction. The coordination of cadmium with some biologically active small molecules can facilitate the removal of cadmium from the body and can decrease the accumulation of the element in the human body [3]. Therefor it has an important value to study this kind of compound. Study of the thermal stability of the drug are of great practical significance for the evaluation of storage period and quality control of drug production. In this paper, using ephedrine hydrochloride, cadmium chloride and hydrochloric acid as reagents, the title complex was synthesized. The crystal structure of the compound was characterized by X-ray crystallography, molar heat capacity was measured by using a precision small sample automated adiabatic calorimeter over the temperature range of \((78—365)\ \text{K}\), the experimental values of the heat capacities were fitted by least squares method. The smooth heat capacities and thermodynamic functions relative to 298.15 K have been calculated based on the fitted polynomial equation [4-6].

Results and Discussion

The molecular structure of title compound was shown in Fig.1, in which the asymmetric unit consists of three \([\text{C}_{10}\text{H}_{16}\text{NO}]^+\) cations, one \([\text{CdCl}_4]^2-\) anion, one \(\text{Cl}\) anion, and one crystallization water molecule, and the molecular formula can be determined as \((\text{C}_{10}\text{H}_{16}\text{NO})_2\text{CdCl}_4\cdot\text{C}_{10}\text{H}_{16}\text{NOCl}\cdot\text{H}_2\text{O}\).

The compound is clearly different from the previous described as \((\text{C}_{10}\text{H}_{16}\text{NO})\ [\text{CdCl}_3\cdot\text{H}_2\text{O}]\) (N.G.Charles et al., 1984) [7]

In the title compound, one imino proton is offered by nitrogen atom in each ephedrine, which forms univalent cation. It is interesting that cadmium atom does not participate in coordinating with ni-
trogen or oxygen atom of ephedrine ligands, which have coordinated ability, but coordinates with four chlorine atoms (the other is a dissociative chlorine atom), and forms a slightly distorted triangular pyramid.

![Fig.1: The molecular structure diagram of title compound.](image)

The bond length of Cd(1)-Cl(4) was longer than the bond length of Cd(1)-Cl(1), Cd(1)-Cl(2) and Cd(1)-Cl(3) obviously (see Table-4), so Cl(4) is located at the top of triangular pyramid. The bond angles of Cl(1)-Cd(1)-Cl(3), Cl(2)-Cd(1)-Cl(3), and Cl(2)-Cd(1)-Cl(1) are 118.81(5)°, 119.45(6)°, and 119.52(6)° respectively, videlicet the total of three bond angles is 357.78°, which is close to 360°, namely Cd(1), Cl(1), Cl(2), and Cl(3) are almost located in a same plane, and the three bond angles approach 120° respectively, which suggests that Cd(1) is almost located in symmetry-center of the plane. The bond angles of Cl(2)-Cd(1)-Cl(4), Cl(2)-Cd(1)-Cl(4)#1, Cl(3)-Cd(1)-Cl(4), Cl(1)-Cd(1)-Cl(4), and Cl(1)-Cd(1)-Cl(4)#1 are 95.08(5)°, 95.69(5)°, 85.17(5)°, 84.93(5)°, and 94.11(5)° respectively, which means it is not a right triangular pyramid. Triangular pyramids invert along the Cd(1)-Cl(4) axis in space, form an infinite one-dimensional straight chain, and stack up. [CdCl$_4$]$^{2-}$ anion bonds with the others unit through electrostatic attraction and hydrogen bonds to form a stable molecule. The water molecules were dispersed in their interspaces and several hydrogen bonds are formed (summarized in Table-1).

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th>□(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(4)-H(4G)...Cl(5)#1</td>
<td>0.085</td>
<td>0.232</td>
<td>0.3160(7)</td>
<td>170.5</td>
</tr>
<tr>
<td>O(4)-H(4F)...Cl(5)</td>
<td>0.085</td>
<td>0.235</td>
<td>0.3192(7)</td>
<td>170.5</td>
</tr>
<tr>
<td>N(3)-H(3B)...Cl(1)#4</td>
<td>0.090</td>
<td>0.252</td>
<td>0.3260(5)</td>
<td>139.5</td>
</tr>
<tr>
<td>N(3)-H(3A)...Cl(1)#3</td>
<td>0.090</td>
<td>0.236</td>
<td>0.3221(5)</td>
<td>159.4</td>
</tr>
<tr>
<td>O(3)-H(3)...O(4)</td>
<td>0.082</td>
<td>0.191</td>
<td>0.2722(8)</td>
<td>172.0</td>
</tr>
<tr>
<td>N(2)-H(2B)...Cl(4)#5</td>
<td>0.090</td>
<td>0.275</td>
<td>0.3475(5)</td>
<td>138.3</td>
</tr>
<tr>
<td>N(2)-H(2B)...Cl(3)#6</td>
<td>0.090</td>
<td>0.255</td>
<td>0.3247(5)</td>
<td>134.7</td>
</tr>
<tr>
<td>N(1)-H(1B)...Cl(2)#2</td>
<td>0.090</td>
<td>0.253</td>
<td>0.3255(5)</td>
<td>138.3</td>
</tr>
<tr>
<td>N(1)-H(1A)...Cl(4)</td>
<td>0.090</td>
<td>0.284</td>
<td>0.3541(5)</td>
<td>136.2</td>
</tr>
<tr>
<td>O(1)-H(1)...Cl(5)#1</td>
<td>0.082</td>
<td>0.243</td>
<td>0.3252(5)</td>
<td>176.6</td>
</tr>
</tbody>
</table>

* Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z; #2 x-1, y, z; #3 x, y, z+1; #4 x-1, y, z+1; #5 x, y-1, z; #6 x-1, y-1, z

Table-1: Hydrogen bond lengths(nm) and bond angles(°) for title complex

There are four types of intramolecular hydrogen bonds in the title compound [8]. One hydrogen bond is (N-H···Cl) between the nitrogen atom of imino group of the cation and the chlorine atom of cadmium tetrachloride anion. The other hydrogen bond is (O-H···Cl), which occurs between the oxygen atom of a water molecule and the dissociative chlorine anion including O(4)-H(4G)···Cl(5)#1 and O(4)-H(4F)···Cl(5). The third, O(3)-H(3)···O(4), occurs between oxygen atom of hydroxyl group of one [C$_{10}$H$_{16}$NO]$^{+}$ cation and oxygen atom of a water molecule. The fourth, occurs between oxygen atoms of hydroxyl groups of other two [C$_{10}$H$_{16}$NO]$^{+}$ cations except which the third kind of hydrogen bond was refered and the chlorine atom of the anion was dissociated including O(2)-H(2)···Cl(5)#1 and O(1)-H(1)···Cl(5)#1. Thanks to all of above referring hydrogen bonds, an infinite twelve-member-loop spatial network with the alternate appearance of [C$_{10}$H$_{16}$NO]$^{+}$- [CdCl$_4$] and [C$_{10}$H$_{16}$NO]$^{+}$- [Cl]-H$_2$O was formed, and the extended supramolecular structure and the network diagram was displayed in Fig. 2 as well as the packing diagram was presented in Fig. 3. The results indicate that the electrostatic attration and hydrogen bonds play an important role in enhancing the robustness of the whole structure.
Fig. 2: The infinite twelve-member-loop spatial network formed through hydrogen bonds between adjacent chains of title compound viewing along a-axis.

Fig. 3: The crystallographic packing diagram of title compound.

The experimental molar heat capacities were presented in Fig. 4, which show that molar heat capacities smoothly go up with the increasing temperature, and the structure of the complex is stable over the temperature range between $T = 78$ K and $T = 365$ K, no phase change, association nor thermal decomposition occurred. A polynomial equation of the experimental molar heat capacities ($C_{p,m}$) against reduced temperatures (X), $X = f(T)$, was fitted by least-squares method in the temperature regions of (78 to 365) K:

$$C_{p,m}(J·K^{-1}·mol^{-1}) = 760.551 + 485.064X + 73.037X^2 - 39.999X^3 + 51.380X^4 + 39.384X^5 \tag{1}$$

in which $X = (T - 221.5)/143.5$ [9]. This equation is valid over the temperature range from 78 to 365 K. The correlation coefficient for the fitting $R^2 = 0.99997$ with an uncertainty ±0.20 %.

Fig. 4: Experimental molar heat capacities of the title complex.

The smoothed molar heat capacities and thermodynamic functions of the title complex were calculated based on the fitted polynomial equation of heat capacities against the reduced temperature (X) according to the following thermodynamic equations:

$$(H_T - H_{298.15}) = \int_{298.15}^{T} C_{p,m} \cdot dT \tag{2}$$

$$(S_T - S_{298.15}) = \int_{298.15}^{T} C_{p,m} \cdot T^{-1}dT \tag{3}$$

The smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were tabulated in Table-2 at intervals of 5 K.

Experiment

All chemicals, ephedrine hydrochloride, CdCl$_2$$\cdot$2.5H$_2$O, hydrochloric acid and anhydrous ethanol used in the experiments were of analytical grade (produced by Tianjin Third Reagent Factory). Strictly according to the molar ratio (3: 1: 2), appropriate amount of ephedrine hydrochloride, hydrated cadmium chloride and hydrochloric acid were weighed based on stoichiometric coefficients of the reaction. The mixture of ephedrine hydrochloride and cadmium chloride were put into agate mortar and ground. Then the mixture was dissolved in anhydrous ethanol in a big beaker, hydrochloric acid was slowly added and stirred evenly, then the mixed solution refluxed about 10 hours.
Table-2: Smoothed heat capacities and thermodynamic functions of title complex

<table>
<thead>
<tr>
<th>T/(K)</th>
<th>C_p,m/(J·K^{-1}·mol^{-1})</th>
<th>H_{f,298.15}/(kJ·mol^{-1})</th>
<th>S_{T,298.15}/(J·K^{-1}·mol^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>306.29 -144.56 -773.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>326.83 -142.97 -754.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>346.32 -141.29 -735.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>364.90 -139.51 -716.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>382.68 -137.64 -697.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>399.77 -135.69 -678.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>416.27 -133.65 -659.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>432.27 -131.53 -640.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>447.87 -129.33 -621.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>463.13 -127.05 -602.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>478.14 -124.70 -584.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>492.96 -122.27 -566.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>507.68 -119.77 -547.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>522.25 -117.19 -529.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>536.84 -114.54 -511.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>551.43 -111.82 -494.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>566.09 -109.03 -476.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>580.83 -106.16 -458.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>595.68 -103.22 -441.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>610.67 -100.20 -423.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>625.82 -97.114 -406.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>641.15 -93.946 -388.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>656.66 -90.702 -371.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>672.36 -87.538 -354.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>688.26 -83.978 -337.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>704.36 -80.497 -319.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>720.66 -76.934 -302.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>737.15 -73.290 -285.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>753.83 -69.562 -268.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>770.69 -65.751 -251.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>787.72 -61.855 -234.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>804.90 -57.874 -217.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>822.24 -53.806 -199.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>839.70 -49.651 -182.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>857.27 -45.409 -165.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>874.95 -41.078 -148.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>892.71 -36.659 -131.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>910.53 -32.151 -114.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>928.40 -27.554 -96.975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>946.30 -22.867 -79.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>964.22 -18.091 -62.562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>1000.1 -8.2692 -28.108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>1017.9 -3.2242 -10.867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>298.15</td>
<td>1029.2 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1035.8 1.9101 6.3836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>1053.6 7.1335 23.643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1071.3 12.446 40.910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>1089.0 17.847 58.186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>1106.6 23.336 75.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>1124.2 28.913 92.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>1141.6 34.577 110.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>1159.1 40.329 127.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>1176.5 46.108 144.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>1193.8 52.094 161.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>1211.1 58.107 179.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>1228.4 64.206 196.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>1245.8 70.391 213.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>1263.2 76.664 231.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The final solution was naturally cooled to room temperature, and laid silently. Several days later, a colourless crystal suitable for X-ray analysis was obtained. Chemical and elemental analysis (model: PE-2400, Perkin Elmer, USA) have shown that practical contents of C, H, N, O, Cd and Cl in the compound have been measured to be 54.25 %, 7.55 %, 6.33 %, 9.63 %, 16.92 % and 5.32 %. Theoretical contents of C, H, N, O, Cd and Cl in the compound have been calculated to be 54.22 %, 7.58 %, 6.32 %, 9.63 %, 16.91 % and 5.34 % respectively. This showed the purity of the sample prepared was higher than 99.50 %.

A suitable single crystal of the complex was glued to a fine glass fiber and was then mounted on Bruker Smart-1000 CCD diffractometer with MoKα radiation (λ= 0.071073 nm). The intensity data were collected in the ω–2θ scan mode at 298(2) K. The empirical absorption corrections were based on multi-scan. The structure was solved by direct method and expanded using Fourier techniques with SHELXL-97 program [10] and all non-hydrogen atoms were refined anisotropically on F^2 by full-matrix least-squares methods using the SHELXT-97 program [10]. Crystal data as well as details of data collection and refinements for the complex were summarized in Table-3 and the selected bond distances and angles were listed in Table-4.

The heat capacities of the compound were measured by a precision automatic adiabatic calorimeter over the temperature range 78 ≤ (T/K) ≤ 365. The calorimeter was established in the Thermochemistry Laboratory of the College of Chemistry and Chemical Engineering, LiaoCheng University, China. The principle and performance of the adiabatic calorimeter, and the procedures of heat capacity measurements have been described in detail elsewhere [11, 12].

Heat-capacity measurements were continuously and automatically carried out by means of the standard method of intermittently heating the sample and alternately measuring the temperature. The heating rate and temperature increments were generally controlled at (0.1 to 0.4) K·min^{-1} and (1 to 3) K.
Table 3: Crystal data and structure refinement parameters for title compound.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₃₀H₅₀CdCl₅N₃O₄</td>
</tr>
<tr>
<td>Formula weight</td>
<td>806.38</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>298(2)</td>
</tr>
<tr>
<td>Wavelength/nm</td>
<td>0.071073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
</tr>
<tr>
<td>a/nm</td>
<td>0.55703(6)</td>
</tr>
<tr>
<td>b/nm</td>
<td>1.39937(15)</td>
</tr>
<tr>
<td>c/nm</td>
<td>1.40559(16)</td>
</tr>
<tr>
<td>α/°</td>
<td>117.819(2)</td>
</tr>
<tr>
<td>β/°</td>
<td>98.8510(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>96.5770(10)</td>
</tr>
<tr>
<td>Volume/nm³</td>
<td>0.93546(18)</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Calculated density (g/cm³)</td>
<td>1.431</td>
</tr>
<tr>
<td>Absorption coefficient/mm⁻¹</td>
<td>0.977</td>
</tr>
<tr>
<td>F(000)</td>
<td>416</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.48 mm x 0.43 mm x 0.40 mm</td>
</tr>
<tr>
<td>θ range for date collection/°</td>
<td>1.68 to 25.01</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-6≤h≤6, -16≤k≤16, -11≤l≤16</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>4842 / 3933 [R(int) = 0.0190]</td>
</tr>
<tr>
<td>Completeness to θ/°</td>
<td>97.9 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.6961 and 0.6514</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3933 / 3 / 389</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.071</td>
</tr>
<tr>
<td>Final R indices [R>2σ(1)]</td>
<td>R1 = 0.0338, wR2 = 0.0855</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0349, wR2 = 0.0866</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.012</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.016(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole/e·nm⁻³</td>
<td>1024 and 967</td>
</tr>
</tbody>
</table>

The performance of the adiabatic calorimeter had been confirmed by the measurement of the heat capacities of reference standard materials (α-Al₂O₃) over the temperature range 77 ≤ (T/K) ≤ 402. The deviations of the experimental results from those of the smoothed curve lie within ± 0.20 %, while the uncertainty is ± 0.30 %, as compared with the values given by the former National Bureau of Standards over the whole temperature range [13].

The mass of the sample of title compound used in calorimetric measurements was 2.68283 g, which was equivalent to 0.0033 mol in terms of its molar mass, M = 806.38 g·mol⁻¹.

Conclusions

This paper mainly reported the crystal structure, the low temperature heat capacities, and thermodynamic properties of the title compound (C₁₀H₁₆NO)₂CdCl₄·C₁₀H₁₆NOCl·H₂O (s).

Acknowledgements

This work was financially supported by the National Science Foundations of China under the contract NSFC No. 20673050 and 20973089, and the Natural Science Foundation of Shaanxi Province (No. 2009JM2014).

References