Fourth Order Connectivity Index of Hexagonal Chains

Luozhong Gong*, Meichun Zhao and, Jing Chen

1Institute of Computational Mathematics, Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, P. R. China.
2Department of Applied Mathematics, Guangdong University of Finance, Guangzhong, Guangdong, 51052, P. R. China
3Department of Mathematics, Hunan First Normal University, Hunan Changshang, 410205, P. R. China
gonglztop@126.com*, zhaomeichunnan@sina.com, chenjing827@126.com

Summary: The higher order connectivity index is a graph invariant defined as
\[\chi_h(G) = \sum_{u_1, u_2, \ldots, u_h} \frac{1}{d_{u_1} d_{u_2} \cdots d_{u_h}}, \]
where the summation is taken over all possible paths of length \(h \), and \(d_{u_i} \) denotes the degree of the vertex \(u_i \) of the graph \(G \). In this paper, we stick to researching the fourth order connected index of hexagonal chains and give a calculation formula and we characterize the extremal graphs with the extremal fourth-order Randić index.

Keywords: Connectivity Index; Hexagonal chain; Extreme situation; Randić index.

Introduction

A topological index of molecules is a numeric quantity. It is structure invariant. The first reported use of a topological index in chemistry was studied by Wiener [1] in the study of paraffin boiling points. In chemical language, the Wiener index is equal to the sum of all shortest Carbon-Carbon bond paths in molecule. In graph theoretical language, it is equal to the number of all shortest distances in a graph. Since then, in order to model various molecular properties, many topological index have been designed [2].

In 1975 M. Randić [3] introduced Randić index (also called connectivity index) and defined as:
\[\chi(G) = \sum_{u \in V(G)} \frac{1}{d_u}, \]
where \(d_u \) denotes the degree of the vertex \(u \) and \(V(G) \) the set of vertices of graph \(G \). Connectivity index is one of the most important topological indices in Chemical Graph Theory. There is a good correlation between it and several physicochemical properties of alkanes: boiling points, surface areas, energy levels, etc. Connectivity index has been extensively investigated and applied in mathematics and chemistry. In [4], Rada, Araujo and Gutman first studied the Randić index of benzanoid systems and phenylenes. After that, in [5] Kier and Hall considered the higher order connectivity indices of a general graph \(G \) as:
\[\chi_h(G) = \sum_{u \in V(G)} \frac{1}{d_u d_{u_1} \cdots d_{u_{h-1}}}, \]
where the summation is taken over all possible paths of length \(h \) of graph \(G \) and approved that higher order connectivity indices have widely practice meaning in physics and chemistry. In [6], Rada gave an expression of the second-order Randić index of benzenoid systems. Deng and Zhang researched the second order Randić index of phenylenes in [7]. After that in [8], authors gave a calculation formula of the third-order Randić index of phenylenes. In this paper, we study the fourth-order connected index of hexagonal chains and find their calculation formula and characterize the extremal graphs with the extremal fourth-order Randić index.

Hexagonal chain

Hexagonal chain is a hexagonal system in which each hexagon is only adjacent to at most two hexagons. We write a hexagonal chain with \(n(n>2) \) hexagons \(H_n \). It is easy to know any hexagonal
chain H_{n+1} with $n+1$ ($n>1$) hexagons can be got by sticking a hexagon to hexagonal chain H_n, which implies any hexagonal chain can be got through the recursive structure. There are three ways to stick a hexagonal to a hexagonal chain H_n: (1) if h_{n+1} in straight lines l_1, is called α type adhesion; (2) if h_{n+1} in straight lines l_2 left, is called the β type adhesion; (3) if h_{n+1} on the right side of the linear l_3, called γ type adhesion. Here l refers to the straight linear connecting the center of h_{n-1} and of h_n. Any a hexagonal chain H_n ($n>2$) can be got, through bonding some hexagons step by step into the H_2, where each step is a type θ, here $\theta = \{\alpha, \beta, \gamma\}$.

Let H_{n+2} is a hexagonal chain with $n+2$ hexagons, which is got by binder a sequence of hexagons with type $\theta_1, \theta_2, L, \theta_n$ to H_2. We call the $H(\alpha, \alpha, L, \alpha)$ linear chain $L(n+2)$, and the $H(\beta, \gamma, \beta, \gamma, L)$ or $H(\gamma, \beta, \gamma, \beta, L)$ zig-zag chain $Z(n+2)$. Some examples of hexagonal chain saw as Fig. 1.

By H_n bond three hexagons getting H_{n+3} has the following twelve cases:

Case 1. $\theta_1 = \alpha \text{ or } \gamma = \beta \text{ or } \gamma = \beta = \alpha$, see Fig. 2 (1), (15) and (19). Among these roads with long size 4, bcdew, cdewx, cdeEz, cCDEz, dewxy, deEzy, ewxyz, eEzyx, wedcC, weEDC, weEzy, wxyzE, xwED, xweEz, xyED, xwEe, yzE, zEDCB is new. Except roads abcd, bcdE, bcCDE, cdeE, dcCDE, deEDC, edcB, edcCD, eE, EedcC and EDCBA, other roads with long size 4 in H_{n+3} is the same as in H_{n+2}. Write $W_1(P)$ and $W_2(P)$ as the weight,

\[
(d_1, d_2, d_3, d_4, d_5)^{\frac{1}{2}}, \text{ of road } P = v_1 v_2 v_3 v_4 v_5 \text{ in } H_{n+2} \text{ and } H_{n+3} \text{ respectively. We calculate the weight of these roads as following Table-1 and Table-2.}
\]

<table>
<thead>
<tr>
<th>Road</th>
<th>$W_1(P)$</th>
<th>$W_2(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcdew</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>cdewx</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>cdeEz</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
</tr>
<tr>
<td>cCDEz</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>dewxy</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>deEzy</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
</tr>
<tr>
<td>ewxyz</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>eEzyx</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>wedcC</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>weEDC</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>weEzy</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>wxyzE</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
</tr>
<tr>
<td>xwED</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>xweEz</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>xyED</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>xweE</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
<tr>
<td>yzE</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>zEDCB</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
</tbody>
</table>
The Fourth Order Connectivity Index of Hexagonal Chain

Let $H_{n+3} = H(\theta_1, \theta_2, L, \theta_n, \theta_{n+1})$ be one of following hexagonal chains:

Fig. 2: Hexagonal Chain H_{n+3}.
Table-2: The weight of roads with long 4 in H_{n+2} and H_{n+3}.

<table>
<thead>
<tr>
<th>abede</th>
<th>bodeE</th>
<th>bcCDE</th>
<th>cdeED</th>
<th>cDCEe</th>
<th>deCDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
<td>$\frac{1}{4\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{2}}$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
<td>$\frac{1}{6\sqrt{3}}$</td>
</tr>
</tbody>
</table>

By the definition of the fourth order connectivity index and the values in Table-1 and Table-2, we have:

\[
\chi^{(4)}(H_{n+2}) = \chi^{(4)}(H_{n+2}) + \frac{5\sqrt{2} + 7\sqrt{3}}{9}
\]

Case 2. $\theta_{n-1} = \theta_n = \beta$ or $\theta_{n+1} = \gamma$, see Fig. 2 (2) and (3). Similar to case 1, we have:

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{13\sqrt{2} + 17\sqrt{3}}{27} \text{ if degree}(a) = 2,
\]

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{11\sqrt{2} + 61\sqrt{3}}{108} \text{ if degree}(a) = 3
\]

Case 7. $\theta_{n-1} = \theta_n = \beta$, $\theta_{n+1} = \alpha$ or $\theta_{n-1} = \theta_n = \gamma$, $\theta_{n+1} = \alpha$, see Fig. 2 (12) and (16). Similar to case 1, we have:

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{19\sqrt{2} + 22\sqrt{3}}{27}
\]

Case 8. $\theta_{n-1} = \theta_n = \gamma$, $\theta_{n+1} = \beta$, see Fig. 2 (13) and (17). Similar to case 1, we have:

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{4\sqrt{2} + 13\sqrt{3}}{18}
\]

Case 9. $\theta_{n-1} = \beta$, $\theta_n = \alpha$, $\theta_{n+1} = \gamma$, see Fig. 2 (14) and (18). Similar to case 1, we have:

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{19\sqrt{2} + 17\sqrt{3}}{27}
\]

Case 10. $\theta_{n-1} = \beta$, $\theta_n = \alpha$, $\theta_{n+1} = \gamma$, $\theta_{n+1} = \gamma$, $\theta_{n+1} = \gamma$, $\theta_{n+1} = \gamma$, see Fig. 2 (20) and (24). Similar to case 1, we have:

\[
\chi^{(4)}(H_{n+3}) = \chi^{(4)}(H_{n+2}) + \frac{7\sqrt{2} + 11\sqrt{3}}{18}
\]
Case 11. \(\theta_{n-1} = \beta, \ \theta_{n} = \gamma, \ \theta_{n+1} = \beta \) or \(\theta_{n-1} = \gamma, \ \theta_{n} = \beta, \ \theta_{n+1} = \gamma \), see Fig. 2 (21) and (25).

Similar as case 1, we have:

\[
4 \chi(H_{n+3}) = 4 \chi(H_{n+2}) + \frac{5}{9} \sqrt{2} + \frac{2}{3} \sqrt{3}
\]

Case 12. \(\theta_{n-1} = \beta, \ \theta_{n} = \gamma, \ \theta_{n+1} = \gamma \) or \(\theta_{n-1} = \gamma, \ \theta_{n} = \beta, \ \theta_{n+1} = \beta \), see Fig. 2 (23) and (27).

Similar as case 1, we have:

\[
4 \chi(H_{n+3}) = 4 \chi(H_{n+2}) + \frac{5}{9} \sqrt{2} + \frac{2}{3} \sqrt{3}
\]

Sum up the above 12 cases, we can get the following theorem:

Theorem 1 Let \(H_{n+2} = H(\theta_1, \theta_2, \ldots, \theta_n) \) and \(H_{n+3} = H(\theta_1, \theta_2, \ldots, \theta_n, \theta_{n+1}) \), then

\[
4 \chi(H_{n+2}) = 4 \chi(H_{n+2}) + \frac{5}{9} \sqrt{2} + \frac{2}{3} \sqrt{3}
\]

The Extremal Graphs of Hexagonal Chain

By the recursive formula of the fourth order connectivity index of hexagonal chain, we deduce the extreme values of fourth order connectivity index, and depict their extremal graphs.

Theorem 2 Let \(H_{n+3} = H(\theta_1, \theta_2, \ldots, \theta_n, \theta_{n+1}) \) be a hexagonal chain with \(n + 3 \) \((n \geq 2)\) hexagons, then the following results hold:

\[
(1) \quad 4 \chi(H_{n+3}) \geq \frac{5n+29}{18} \sqrt{2} + \frac{7n+12}{9} \sqrt{3}
\]

and only if \((\theta_1, \theta_2, L, \theta_n) = (\alpha, \alpha, L, \alpha)\), the equality holds. That is, \(H_{n+3} \) is a linear chain (2)

\[
4 \chi(H_{n+3}) \leq \frac{10n+41}{18} \sqrt{2} + \frac{18n+35}{108} \sqrt{3}
\]

If and only if \((\theta_1, \theta_2, L, \theta_n) = (\beta, \gamma, \beta, \gamma, \ldots)\) or \((\gamma, \beta, \gamma, \beta, L)\), the equality holds. That is, \(H_{n+3} \) is a Zig-Zag chain \(Z_{n+3} \).

Proof: By theorem 1 and
\[\chi(H(\alpha,\alpha)) = \frac{13}{6} \sqrt{2} + \frac{26}{9} \sqrt{3}, \quad \chi(H(\beta,\beta)) = \chi(H(\gamma,\gamma)) = \frac{16}{6} \sqrt{2} + \frac{71}{27} \sqrt{3}, \]

we can get
\[\chi(L_{n+3}) = \frac{5(n-2) + 39}{18} \sqrt{2} + \frac{26}{9} \sqrt{3} = \frac{5n + 29}{18} \sqrt{2} + \frac{7n + 12}{9} \sqrt{3}, \]

\[\chi(Z_{n+3}) = \frac{10(n - 2) + 51}{18} \sqrt{2} + \frac{18(n - 2) + 71}{27} \sqrt{3} = \frac{10n + 41}{18} \sqrt{2} + \frac{18n + 35}{108} \sqrt{3}. \]

Next, we prove our theorem by inductive method. By a series of direct calculation, we can get:
\[\chi(H_2) = \sqrt{2} + \frac{5}{6} \sqrt{3}, \quad \chi(H_3) = \left\{ \begin{array}{l}
\chi(H(\alpha,\alpha)) = \frac{29}{18} \sqrt{2} + \frac{4}{3} \sqrt{3}, \\
\chi(H(\beta,\beta)) = \chi(H(\gamma,\gamma)) = \frac{31}{18} \sqrt{2} + \frac{4}{3} \sqrt{3}.
\end{array} \right. \]

\[\chi(H_4) = \left\{ \begin{array}{l}
\chi(H(\alpha,\alpha)) = \frac{17}{9} \sqrt{2} + \frac{19}{9} \sqrt{3}
\chi(H(\beta,\beta)) = \chi(H(\gamma,\gamma)) = \frac{9}{4} \sqrt{2} + \frac{17}{9} \sqrt{3}
\chi(H(\alpha,\beta)) = \chi(H(\alpha,\gamma)) = \frac{9}{4} \sqrt{2} + \frac{17}{9} \sqrt{3}
\chi(H(\beta,\alpha)) = \chi(H(\gamma,\alpha)) = \frac{41}{18} \sqrt{2} + \frac{21}{108} \sqrt{3}
\chi(H(\beta,\gamma)) = \chi(H(\gamma,\beta)) = \frac{41}{18} \sqrt{2} + \frac{53}{27} \sqrt{3}.
\end{array} \right. \]

From the above we can see, the theorem holds for \(n = 0,1,2 \).

\[\frac{5}{18} \sqrt{2} + \frac{7}{9} \sqrt{3} < \frac{19}{36} \sqrt{2} + \frac{17}{27} \sqrt{3} < \frac{19}{36} \sqrt{2} + \frac{22}{27} \sqrt{3} < \frac{3}{18} \sqrt{2} + \frac{17}{36} \sqrt{3} < \frac{11}{18} \sqrt{2} + \frac{61}{108} \sqrt{3} < \frac{5}{9} \sqrt{2} + \frac{17}{27} \sqrt{3} \]

\[< \frac{4}{9} \sqrt{2} + \frac{11}{18} \sqrt{3} < \frac{7}{12} \sqrt{2} + \frac{11}{18} \sqrt{3} < \frac{13}{18} \sqrt{2} + \frac{55}{36} \sqrt{3} < \frac{23}{36} \sqrt{2} + \frac{7}{9} \sqrt{3} < \frac{29}{36} \sqrt{2} + \frac{4}{9} \sqrt{3} < \frac{5}{9} \sqrt{2} + \frac{2}{3} \sqrt{3} \]

(1) Now we assume the case (1) of the theorem holds for \(n \), that is \(\chi(H_{n+2}) \geq \chi(L_{n+2}) \).

Let \(H_{n+3} = H(\theta_1, \theta_2, ..., \theta_n, \theta_{n+1}) \) be a hexagonal chain with \(n + 3 \) hexagons. By Theorem 1, we can get
\[\chi(H_{n+3}) \geq \chi(H_{n+2}) + \frac{5}{18} \sqrt{2} + \frac{7}{9} \sqrt{3}. \] The equation hold iff \((\theta_{n-1}, \theta_n, \theta_{n+1}) = (\alpha, \alpha, \alpha) \). By the inductive hypothesis, \(\chi(H_{n+3}) \geq \chi(L_{n+3}) \). The equation hold if and only if \(H_{n+3} \) is \(L_{n+3} \). Therefore the theorem (1) holds.

(2) Now we assume the case (2) of the
Theorem holds for n, that is $4\chi(H_{n+2}) \leq 4\chi(Z_{n+2})$.

By Theorem 1, $4\chi(H_{n+2}) \leq 4\chi(H_{n+2}) + \frac{5}{9}\sqrt{2} + \frac{2}{3}\sqrt{3}$.

Therefore, by the inductive hypothesis, $4\chi(H_{n+2}) \\leq 4\chi(Z_{n+2}) + \frac{5}{9}\sqrt{2} + \frac{2}{3}\sqrt{3}$ if and only if H_{n+3} is Z_{n+3}, the equation holds. Therefore, the theorem (2) holds.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments that improve the paper.

Luozhong Gong and Jing Chen are thankful to the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 12B050), the Nation Nature Science Foundation China (Grant No. 11326057, 11301377), and the construct program of the key discipline in Hunan University of Science and Engineering for financial support.

References